Interview with Dr. James T Murray

“Autophagy is involved, in Type 2 diabetes, in neurodegenerative processes, in cancer… incidentally, many diseases that affect us as we age.”

Dr. James T Murray, from the School of Biochemistry and Immunology at the Trinity College in Dublin, gave a seminar at our Institute last month. It was a very interesting talk, mainly about how autophagy is involved in Parkinson’s disease. Just before the talk we had the chance to ask him a few questions…

  1. What is autophagy?

Cells get damaged. It is like a car: you have to service it; you have to put fuel into it, clean it, otherwise it doesn’t work as well. The autophagy pathway is a little bit like the servicing system for the cell. There are damaged materials, damaged organelles, misfolded proteins, and physiological stressors that cells must deal with. Autophagy is the mechanism by which the damage is removed before it becomes detrimental to cell viability. All eukaryotic cells have it so that they can be protected against environmental stress.

  1. How does it work?

It is similar to the endocytic pathway: a cellular structure is formed around the damaged material, to enclose it, that will eventually merge with a lysosome for the contents to be degraded. What is different, though, so the cell doesn’t get confused, is that in the autophagy pathway the vesicle has a double membrane, whereas in the endocytic pathway it is single. This double membrane vesicle that forms is called the autophagosome, and is usually spherical in shape. After the autophagosome finds and fuses with a lysosome, lysosomal enzymes begin to chop everything up, obtaining free fatty acids, amino acids, etc., and all the damaging materials are recycled.

  1. Why is it that we get old if our cells are recycling themselves to become new all the time?

My thinking is because the autophagy pathway becomes less profficient when we get older. This is because either the signals that control the autophagy pathway become less able to stimulate the response, the ability to package up damaged material is less efficient, or the amount of damage that needs clearing becomes too great for utophagy to cope with.

What I find fascinating is there is a little and very interesting organism, a salamander type creature that is called the olm, which lives in caves and can live for more than a hundred years. There is no natural light; there are no natural toxins, nor any predators in their environment. Once removed from normal physiological stresses they have adapted to a very long life span, for several reasons. I wonder whether there is anything special about their autophagy. If I had the opportunity, I would study the Olm.

  1. Aubrey de Grey is a British gerontologist who claims that, when we are able to fix the damage that we accumulate in our cells during our lives, humans will live for more than 1000 years…

No. I doubt we will ever live to 1000. We will get killed before that, we will probably be hit by a car! (Laughs) Theoretically I suppose yes, because if you can limit the amount of damage that occurs in tissues and organs, then there is no reason why cells, tissues and thus organisms can’t last for much longer periods of time, but to get to that point we would need a much greater understanding of ageing at a systemic level to be able to make the kinds of advances required to live so long.

  1. How can a cell know that it must recycle a specific organelle?

Well, I will use the example of the mitochondria. When this organelle works properly, a protein called PINK1 is constantly moved from the outside of the mitochondria, to the inside, where it is processed, then degraded. However, when mitochondrial function is compromised, PINK1 accumulates on the surface of the mitochondria, and this generates a signal that makes another protein, Parkin, functional. Parkin then activates other surface molecules, and these molecules act as signalling clues for destruction leading to selective autophagy of mitochondria, which is called mitophagy.

  1. What happens if the autophagy mechanism is not working properly?

Any fluctuations in normal autophagy have detrimental effects: both underactivity or the over-activity, and can lead to disease. Autophagy is involved, in Type 2 diabetes, in neurodegenerative processes, in cancer… incidentally, many diseases that affect us as we age.

  1. What happens in cancer?

It is complex: depending on the stage of the disease, autophagy is increased or decreased. In early stages of neoplastic diseases, autophagy is attenuated: there is an accumulation of damage that will produce the genetic lesions to activate oncogenes. This makes sense, because autophagy normally functions to eliminate damage, and so has what we consider tumour suppressor function. Then, when the primary tumour mass is forming, tumour cells and the surrounding normal tissue increase autophagy activity to provide nutrients for tumour cell growth and proliferation. Then, later, whenever tumours break away and tumour cells arrive at distant micrometastatic lesions through the circulation, autophagy comes into play again… It comes in waves that are complicit in cancer progression.

  1. And is any of the therapies used nowadays to treat cancer using the autophagy mechanism as their target?

One of the key responses to current chemotherapeutic drugs is chemotherapy resistance: patients become resistant to their first line treatment. In these chemoresistant tissues, the autophagy pathway frequently becomes activated, which is not surprising: you are insulting a tumour with a very large quantity of a toxic compound, so it will mobilize the autophagy pathway to try to limit damage. A new therapeutic strategy that is being explored is to deliver a combination treatment with standard chemotherapy agents and a drug that block the autophagy pathway, which currently are drugs that block lysosome activity. Drugs that are more selective for autophagy inhibition are still in the early stages of research development. We are also not certain of the long-term secondary effects of using specific autophagy inhibitors as drugs. So, yes: autophagy can be a very good druggable target, but it is unlikely that this strategy will work well enough on its own; modern oncology is tending towards multidrug cocktails.

  1. Today you are going to talk about autophagy in Parkinson’s disease. What is the relation between them?

Autophagy is essential for most aspects of the physiology of Parkinson’s disease. It is a multifactorial disease, which can be produced for many different kinds of protein mutations: in α–synuclein, in LRRK2, in PINK1, etc. These mutations can produce mitochondrial damage, which can eventually lead to an energy stress that can overwhelm and poison the autophagy pathway.

  1. What are you team currently working on?

Oh GOD, we work on a lot of different things!

Basically, we are interested in protein kinases and cell signalling processes that regulate autophagy. We study how these processes are involved in Parkinson’s disease, cancer, Alzheimer’s disease, type 2-diabetes, and also a rare disease called cystinosis. Well, and we also have a project on microglial function…the key point though is that much of the signals are common and so we can use our expertise to understand autophagy signaling in different contexts.

  1. If there was fire, and you could just safe one of your papers, which one would it be?

This is a hard one…! I think my first paper, as a PhD student. It was not a very spectacular publication, but it was my first. It was about kinases in macrophages, and I was very very proud of that work because I was able to mix enzymology, protein biochemistry and cell biology. That paper has really been the template approach I have tried to apply throughout my research career.

Roser Bastida Barau

Entrevista al Dr. Carlos Barcia

“La neuroinflamación tiene un papel importantísimo en la muerte neuronal progresiva que sucede en la enfermedad de Parkinson”

El Dr. Carlos Barcia es el líder del grupo de investigación en Neuro-immunidad. Estudia la Neuro-inflamación en el Sistema Nervioso Central y su implicación en los procesos neurodegenerativos. En esta entrevista nos habla de la respuesta immune cerebral en la enfermedad de Parkinson:

  1. ¿Qué es la enfermedad de Parkinson?

Como James Parkinson la definió, es un síndrome neurológico que engloba una serie de síntomas. Principalmente, la enfermedad se define por una falta de movimiento (acinesia) o un enlentecimiento de los movimientos (bradicinesia), pero también pueden aparecer otras alteraciones. Es muy característico y muy conocido el temblor generalizado, pero no siempre se da. También pueden aparecer trastornos posturales, típicamente que el paciente se muestra encorvado, además de otras alteraciones no motoras. Los síntomas no motores son menos conocidos pero también son problemáticos para el paciente: alteraciones ortostáticas, depresión, o incluso, en estados avanzados, alteraciones cognitivas. Fundamentalmente, todas estas manifestaciones clínicas están causadas por una falta de dopamina en el cuerpo estriado del cerebro, debida a la muerte de un tipo de neuronas de la sustancia negra del mesencéfalo. Estas neuronas se mueren, pero no sabemos por qué…

  1. ¿Hay sospechas?

Hay hipótesis. Hay algunas familias que desarrollan parkinsonismo que tienen alteraciones genéticas muy claras, pero no todos los enfermos de Parkinson tienen estas mutaciones.

Se piensa, también, que hay factores ambientales, como la exposición a algunos pesticidas, que podrían alterar las estructuras celulares, a diferentes niveles, y causar la muerte neuronal dopaminérgica. Estos pesticidas, tipo rotenona, se parecen a los agentes neurotóxicos que nosotros utilizamos en experimentación para causar una enfermedad de Parkinson de forma artificial. Pensamos que algunos pacientes podrían haber estado expuestos a estos pesticidas y haber desarrollado la enfermedad de Parkinson. Sin embargo, todavía no se ha podido demostrar una causa-efecto: no es que cuando aparecieron los pesticidas apareció la enfermedad de Parkinson, o que donde haya estos pesticidas haya más casos. Sin embargo, podrían ser un desencadenante en individuos con alguna predisposición.

  1. ¿Cómo ha evolucionado la investigación de esta enfermedad?

En las últimas dos décadas ha habido progresos muy importantes a la hora de entenderla. Ha habido un gran avance en la información, desde muchos puntos de vista: bioquímico, genético, molecular, celular… Pero, realmente, no sabemos todavía el origen.

  1. ¿Y en los tratamientos?

En los años 60 se descubrió la L-Dopa, un fármaco que una vez llega al cerebro, se convierte en dopamina y, así, compensa la dopamina que se deja de generar tras la muerte de las neuronas dopaminérgicas de la sustancia negra. Este hallazgo fue un punto de inflexión muy importante, porque permitió tratar los síntomas de la enfermedad.

Hoy en día todavía se usa la L-dopa, u otros fármacos análogos a la dopamina, generalmente en combinación con otros compuestos que alargan el tiempo de acción de estos medicamentos. Los pacientes tienen una calidad de vida bastante aceptable, pero, a pesar de que el tratamiento es bueno, el proceso degenerativo sigue avanzando.

Otra opción terapéutica es la cirugía, la llamada estimulación cerebral profunda. La muerte neuronal dopaminérgica produce, en distintas áreas cerebrales, unas lesiones o alteraciones en cadena, que hacen que haya zonas que se hiperactiven. La cirugía trata de poner un electrodo intracraneal, con un cable conectado, para dormir los núcleos hiperactivados. Los resultados son muy espectaculares, porque realmente la mejoría es muy visible, pero esta terapia solamente se hace en algunos pacientes de elección, que cumplen una serie de condiciones.

  1. ¿Cuáles son los obstáculos o retos que se encuentran en la investigación?

Yo creo que el primer reto es encontrar el origen de la enfermedad.  A pesar de que hay muchos grupos en el mundo que estudiamos este síndrome, todavía desconocemos cuál es el origen.

Otro reto sería diagnosticar la enfermedad de forma precoz: cuando el paciente llega a la clínica es porque empieza a notar los síntomas y, en este momento, ya se han muerto alrededor del 70 % de las neuronas de la sustancia negra. Llegados a este punto, sería muy difícil poder hacer algún tratamiento curativo, porque el proceso neurodegenerativo ya está muy avanzado. Igualmente, hoy por hoy, no existe ningún tratamiento que pueda revertir el daño neuronal producido por la enfermedad: suponiendo el caso ideal de que llegara a la clínica una persona que supiéramos 100% seguro que iba a tener la enfermedad de Parkinson, ¿qué podríamos ofrecerle? Ahora mismo, nada. Este sería el tercer reto.

  1. ¿Qué tipo de investigación estáis realizando en vuestro equipo?

Básicamente, encontrar agentes terapéuticos que modifiquen el transcurso de la enfermedad. Nuestra hipótesis es que la neuroinflamación tiene un papel importantísimo en la muerte neuronal progresiva.

En modelos de la enfermedad de Parkinson, se ha visto que hay unas células del sistema nervioso central, las células microgliales, que están activadas de forma exacerbada. Estas células se encargan de las primeras fases de la respuesta inmunológica en el sistema nervioso, actuando como macrófagos cuando reciben señales neuronales que las activan.

Nuestra teoría es que estas señales están exageradas en los enfermos de Parkinson, y que esto produce la fagocitosis masiva de las neuronas dopaminérgicas. Creemos  que, si bloqueáramos estos mensajes, podríamos reducir el daño en el cerebro y, por eso, estamos trabajando en diferentes moléculas y encargadas de la motilidad microglial y de los receptores que se encargan de esa fagocitosis.

  1. ¿Hay alguna otra enfermedad que también esté relacionada con la neuroinflamación?

Sí, la neuroinflamación aparece prácticamente en cualquier lesión del tejido nervioso.  Por ejemplo, también está relacionada con el daño que se produce después de un traumatismo craneal: tras una lesión de este tipo, algunas neuronas se mueren al momento, pero hay otras que, aunque en un principio no estaban dañadas y eran viables, también son eliminadas por la microglía. Esto sucede porque la señalización que se produce va más allá de lo que debe. Algo similar a lo que ocurre en nuestros modelos de neurodegeneración. Así, si podemos evitar que esto suceda, reduciremos el daño, y esto ha sido probado con éxito en ratones. Ahora se trata de probar un tratamiento similar en modelos de enfermedad de Parkinson, que es en lo que estamos trabajando en este momento.

Amelia-Kate Larkins

Entrevista a la Dra. Rosario Moratalla

“Seguramente, cuando descubramos qué es lo inicia la muerte neuronal en el Parkinson, tendremos la cura de la enfermedad”

rosario3

El primer seminario del año lo hizo la Dra. Rosario Moratalla, del Instituto Cajal de Madrid- CSIC. Su grupo de investigación se dedica, principalmente, a estudiar la dopamina y su implicación en la enfermedad de Parkinson. Tuvimos el placer de poder hacerle esta entrevista:

  1. ¿Qué es exactamente la dopamina?

La dopamina es un neurotransmisor, una molécula química que se sirve para transmitir una información entre neuronas u otras células del sistema nervioso.

  1. ¿Qué relación tiene con la enfermedad de Parkinson?

El Parkinson se produce, fundamentalmente, porque un tipo de las neuronas que producen dopamina se mueren: las neuronas dopaminérgicas de la sustancia negra, parte compacta. Estas neuronas proyectan sus fibras nerviosas al cuerpo estriado, que se encarga de la planificación, organización y ejecución de los movimientos voluntarios. Entonces, al morir las neuronas de la sustancia negra parte compacta, la falta de dopamina en el estriado produce los síntomas motores del Parkinson, temblor y bradicinesia e inestabilidad postural, principalmente.

  1. ¿Y por qué se produce esta muerte?

Esa es la pregunta del millón. Esta respuesta es la que los investigadores clínicos y básicos estamos buscando… No sabemos todavía qué es lo que la inicia. Hay muchas teorías y, seguramente, cuando lo descubramos, tendremos la cura de la enfermedad de Parkinson.

  1. ¿Qué tratamientos son los más eficaces hoy día para tratar esta enfermedad?

Hoy en día, igual que hace 60 años, el tratamiento de elección es la L-Dopa. Se trata de un fármaco que, cuando llega al cerebro, se transforma en dopamina. En todos estos años no se ha encontrado ningún otro medicamento que sea más eficaz. Hay otros tratamientos farmacológicos, como los inhibidores del metabolismo de la dopamina o los agonistas dopaminérgicos, pero no son tan eficientes.

Otros tipos de terapias son la estimulación cerebral profunda, que se está aplicando hoy en día, y las terapias génica y celular, que se están investigando; pero ninguno de estos tratamientos cura, hoy por hoy, la enfermedad.

  1. ¿La terapia celular sería introducir células nuevas en el cerebro?

Sí, es una estrategia que se está estudiando. Consiste en trasplantar en el cuerpo estriado del cerebro células capaces de sintetizar dopamina. Sin embargo, parece ser que estas células, aunque están sanas, cuando se trasplantan en un hábitat parkinsoniano, acaban adquiriendo señales de daño y por tanto también están en riesgo de muerte celular. Aunque hay que admitir que esto se ha visto después de 10-15 años del trasplante.  Se está trabajando muy activamente en esta línea de investigación para establecer protocolos seguros que eliminen estos defectos y conseguir una mejor integración de las células en el tejido huésped.

  1. ¿Cuántos años pasan desde que empieza el proceso de Parkinson y la persona siente los síntomas?

Pueden pasar, tranquilamente, unos 5-10 años, porque hasta que no se han muerto alrededor del 60% de las neuronas dopaminérgicas de la sustancia negra, no aparecen los síntomas motores de la enfermedad. Esto nos da una idea de la increíble capacidad del sistema dopaminérgico para compensar la falta de dopamina. Nuestro organismo está preparado para producir mucha más de la que necesitamos.

  1. Y, aparte de controlar el movimiento, ¿qué otras funciones tiene la dopamina en el cuerpo?

La dopamina es uno de los neurotransmisores principales y está implicada en multitud de funciones. Entre otras, en los procesos de aprendizaje y memoria, en regular el estado de ánimo, en la toma de decisiones y en las adicciones. De esto se ocupan las neuronas dopaminérgicas del sistema límbico, que son un poco diferentes de las neuronas dopaminérgicas de la sustancia negra.

  1. ¿Qué tiene que ver la dopamina con el placer?

¡Tiene que ver todo! Porque es uno de los neurotransmisores más importantes del sistema de recompensa. Liberamos dopamina, por ejemplo, cuando estamos hambrientos y comemos, cuando tenemos sed y bebemos. La dopamina juega un papel esencial en la continuidad de las especies, porque, en el sistema límbico, la segregamos cuando hacemos cosas que hacen que los individuos sobrevivamos y la especie continúe, como mantener relaciones sexuales o alimentarnos. Por eso sentimos placer cuando hacemos estas actividades.

rosario1

  1. ¿Y esto puede verse afectado por el tratamiento con L-Dopa?

Claro, cuando administramos L-Dopa, el fármaco va a todos los sistemas dopaminérgicos, no solamente a la sustancia negra. En el circuito límbico, el tratamiento con L-Dopa puede producir el síndrome de desregulación dopaminérgica, en el que los pacientes se pueden hacer adictos al tratamiento, presentar hipersexualidad, compras compulsivas, ludopatía, conductas de riesgo, etc.

  1. Vuestro grupo también trabajaba estudiando cómo algunas drogas de abuso, como la cocaína o el éxtasis, actúan sobre los circuitos dopaminérgicos. ¿A qué conclusiones estáis llegando en este campo?

Hace años, trabajábamos estudiando qué hacía la cocaína en el sistema nervioso. Lo que vimos fue que tanto sus efectos placenteros como los motores se producen porque actúa sobre los receptores dopaminérgicos D1.

Más recientemente, ya en el Instituto Cajal, trabajamos estudiando los efectos neurodegenerativos del éxtasis y de las anfetaminas. Estas sustancias ocasionan la pérdida del 80% de los axones de las neuronas dopaminérgicas de la sustancia negra, y también pueden provocar la muerte de estas células. Los axones pueden recuperarse a largo plazo, pero las neuronas de la sustancia negra que se han muerto no se recuperan nunca.

  1. ¿En qué estáis trabajando ahora en tu grupo de investigación?

Estamos trabajando en varias líneas de investigación.

La primera es en el estudio de los mecanismos moleculares que producen uno de los efectos secundarios más incapacitantes del tratamiento con L-Dopa: las disquinesias. Es una alteración por la que los pacientes tienen movimientos involuntarios anormales que no pueden o les es difícil parar aparte de las distonías del tronco y de las extremidades. Si consiguiéramos inhibir las disquinesias sin reducir los efectos terapéuticos de la L-DOPA, mejoraríamos mucho la calidad de vida de estas personas.

En otra línea de investigación, estamos explorando distintas terapias alternativas, como la estimulación magnética transcraneal, que ya ha dado resultados muy prometedores en otros trastornos cerebrales como la depresión.

También estamos desarrollando nuevos radiotrazadores con el objetivo de identificar sujetos de riesgo para el diagnóstico precoz de la enfermedad de Parkinson y prevenir el proceso degenerativo sin tener que esperar a que aparezcan los síntomas motores para poder hacer el diagnóstico.

Finalmente, estamos estudiando los mecanismos celulares y moleculares de la degeneración de las neuronas dopaminérgicas en células y neuronas derivadas de pacientes parkinsonianos. Buscamos identificar las causas de esta degeneración y ver si podemos, mediante ingeniería genética, revertirlas y detener el proceso. Dentro de esta línea, también estamos investigando el trasplante de neuronas dopaminérgicas derivadas de células madre, para proporcionar una solución a largo plazo para los síntomas motores del Parkinson. Este proyecto lo estamos llevando a cabo en colaboración con el Dr. Vicario, del Instituto Cajal.

  1. ¿Cuáles piensas que serán las estrategias terapéuticas de futuro para tratar la enfermedad de Parkinson?

Se basarán en detectar sujetos de riesgo en estadios muy tempranos de la enfermedad, mediante trazadores o biomarcadores, para prevenir o detener el desarrollo del proceso degenerativo mediante la intervención clínica temprana. Tampoco descarto la terapia génica ni la celular, que proporcionarían remedios duraderos para esta patología.

  1. Y ya para acabar, si pudieras salvar solamente uno de tus artículos de un incendio, ¿cuál elegirías y por qué?

Es difícil elegir cuando todos los artículos se han hecho con mucho esfuerzo e ilusión, pero, si lo tengo que hacer, elegiría el artículo en el que establecimos la activación de ERK y FosB y la necesidad de la falta extrema de dopamina en el núcleo caudado-putamen para la aparición de las disquinesias inducidas por L-DOPA. Estos resultados han sido replicados en otros laboratorios y, además, abrieron nuevas líneas de investigación básica y ampliaron el abanico de terapias alternativas.  Este artículo que publicamos en el 2006, tuvo y sigue teniendo un gran impacto en el campo en nuestra área de investigación.

¡Muchas gracias, Rosario!

Roser Bastida Barau

 

1 minuto y medio: el Parkinson

¿Qué es la Enfermedad de Parkinson?

La enfermedad de Parkinson es una enfermedad neurodegenerativa progresiva caracterizada por la pérdida gradual de motilidad, enlentecimiento de movimientos, rigidez, temblor y trastornos posturales.

¿Qué ocurre en el cerebro de los pacientes con enfermedad de Parkinson?

Los pacientes sufren la desaparición de una pequeña población de unas neuronas específicas, denominadas neuronas dopaminérgicas, las cuales sintetizan dopamina, un neurotransmisor involucrado en importantes funciones motoras.

¿Es curable o tratable?

Desafortunadamente, la enfermedad de Parkinson no es curable, aunque los tratamientos farmacológicos son muy efectivos por largos periodos de tiempo. Para algunos pacientes, la intervención quirúrgica puede ser efectiva. Sin embargo, estos tratamientos solamente reducen los síntomas de forma temporal mientras el proceso degenerativo sigue progresando.

¿Es hereditario?

La forma más común de la enfermedad de Parkinson, no es trasmisible genéticamente. Sin embargo, existen algunas alteraciones genéticas raras en algunas familias que causan un síndrome parkinsoniano prácticamente idéntico.

¿Los pacientes mueren de la enfermedad de Parkinson?

La enfermedad de Parkinson no es mortal por si misma. Los pacientes con enfermedad de Parkinson mueren por complicaciones derivadas. En las fases más avanzadas de la enfermedad, los problemas respiratorios son una de las causas más frecuentes de fallecimiento, debido a la debilitación de los músculos torácicos.